БИОТЕХНОЛОГИЯ

БИОТЕХНОЛОГИЯ
(от био..., греч. techne — искусство, мастерство и ...логия), использование живых организмов и биол. процессов в производстве. Термин «Б.» получил широкое распространение с сер. 70-х гг. 20 в., хотя такие отрасли Б., как хлебопечение, виноделие, пивоварение, сыроварение, основанные на применении микроорганизмов, известны с незапамятных времён. Совр. Б. характеризуется использованиембиол. методов для борьбы с загрязнением окружающей среды {биологическая очистка сточных вод и т. п.), для зашиты растений от вредителей и болезней, производства ценных биологически активных веществ (антибиотиков, ферментов, гормональных препаратов и др.) для народного х-ва. На основе микробиол. синтеза разработаны пром. методы получения белков, аминокислот, используемых в качестве кормовых добавок. Развитие генетич. и клеточной инженерии позволяет целенаправленно получать ранее недоступные препараты (напр., инсулин, интерферон, гормон роста человека и т. д.), создавать новые полезные виды микроорганизмов, сорта растений, породы животных и т. п. К достижениям новейшей Б. можно отнести также применение иммобилизованных ферментов, получение синтетич. вакцин, использование клеточной технологии в племенном деле на животноводческих комплексах и др. Широкое распространение получили гибридомы и продуцируемые ими моноклональные (одной специфичности) антитела, используемые в качестве уникальных реагентов, диагностич. и лечебных препаратов. Совр. Б. использует достижения биохимии, микробиологии, мол. биологии и генетики, иммунологии, биоорганич. химии; интенсивно развивается в СССР, США, Японии, Франции, ФРГ, ВНР и др. странах.
.(Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. — 2-е изд., исправл. — М.: Сов. Энциклопедия, 1986.)
биотехноло́гия
использование живых организмов и биологических процессов для получения и переработки различных продуктов. Биотехнологические методы издавна применяются в хлебопечении, сыроварении, виноделии и других производствах с участием микроорганизмов (бактерий и микроскопических грибов). С сер. 20 в. микроорганизмы начали использовать для промышленного получения вначале антибиотиков, затем витаминов, аминокислот, ферментов, кормовых белков, бактериальных удобрений и др. Микробиологическая промышленность стала важной отраслью экономики во многих странах.
С возникновением в 1970-х гг. генной и клеточной инженерии, совершенствованием методов культивирования клеток и тканей в развитии биотехнологии начался новый этап. В это время появился и сам термин «биотехнология», употребляемый обычно только по отношению к промышленным технологиям, основанным на применении молекулярно-генетических подходов и методов.
К нач. 21 в. в биотехнологии сложилось несколько направлений. Относительно «старое» – крупнотоннажный микробиологический синтез – обогатилось новыми методами, повышающими его эффективность (получение и отбор продуктивных мутантов, использование генно-инженерных способов и др.). Напр., для увеличения производства незаменимой аминокислоты треонина в клетки продуцента – кишечной палочки – вводят дополнительные гены, ответственные за синтез этой аминокислоты.
Самостоятельным направлением в биотехнологии стало использование иммобилизованных ферментов, т.е. ферментов, закреплённых на каком-либо твёрдом носителе. При этом их эффективность и длительность использования возрастают многократно.
Развитие методов генной инженерии позволило создавать желаемое сочетание генов, клонировать их и вводить этот чужеродный генетический материал в клетки и целые организмы. Так, гены человека, ответственные за синтез определённых белков, встраивали в ДНК бактерий, которые приобретали способность синтезировать этот белок. Таким способом в 1980-х гг. был получен (с помощью кишечной палочки) препарат гормона углеводного обмена – человеческий инсулин. Чужеродные гены встраивают в геномы растительных и животных организмов, получая трансгенные растения и трансгенные животные с нужными человеку свойствами и признаками, напр. высокие урожайность и продуктивность, устойчивость к болезням, высоким и низким температурам, бо́льшая технологичность, упрощающая содержание животных и уборку урожая.
Клеточная инженерия обеспечила возможность получения высокопродуктивных культур растительных клеток, вырабатывающих биологически активные вещества для медицины. Клеточные гибриды между лимфоцитами крови и опухолевыми клетками (гибридомы) используют для получения антител (иммуноглобулинов) одного определённого вида (т.н. моноклональные антитела).
Клонирование, издавна широко применяющееся в растениеводстве и известное как вегетативное размножение, с кон. 20 в. стало использоваться и для размножения с.-х. животных (овечка Долли, полученная в Великобритании в 1997 г.).
Значение биотехнологии велико. Биологически активные вещества (антибиотики, витамины, ферменты и др.), полученные микробиологическим синтезом, находят широкое применение в медицине, сельском хозяйстве, в пищевой, лёгкой и др. отраслях промышленности. С помощью микроорганизмов из растительных отходов получают топливный биогаз (смесь метана и диоксида углерода), осуществляют обезвреживание и разложение промышленных и бытовых отходов, очистку сточных вод, выщелачивание металлов (золота, меди) из горных пород и отвалов. Полагают, что в недалёком будущем биотехнология способна решить основные проблемы человечества – охрану здоровья и окружающей среды, обеспечение пищей и источниками энергии.
.(Источник: «Биология. Современная иллюстрированная энциклопедия.» Гл. ред. А. П. Горкин; М.: Росмэн, 2006.)


Биологический энциклопедический словарь 

БИОТИН →← БИОТА

T: 0.133117367 M: 3 D: 3